ERLANG

Secure Socket Layer

Copyright © 1999-2021 Ericsson AB. All Rights Reserved.
Secure Socket Layer 10.3.1.2
December 21, 2021

Copyright © 1999-2021 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 21, 2021

1.1 Introduction

1 SSL User's Guide

The SSL application implements Transport Layer Security (TLS), formerly known as the Secure Socket Layer (SSL),
that isit provides secure communication over sockets.

1.1 Introduction

1.1.1 Purpose

Transport Layer Security (TLS) and its predecessor, the Secure Sockets Layer (SSL), are cryptographic protocols
designed to provide communications security over a computer network. The protocols use X.509 certificates and
hence public key (asymmetric) cryptography to authenticate the counterpart with whom they communicate, and to
exchange a symmetric key for payload encryption. The protocol provides data/message confidentiality (encryption),
integrity (through message authentication code checks) and host verification (through certificate path validation).
DTLS (Datagram Transport Layer Security) that is based on TLS but datagram oriented instead of stream oriented.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, the concepts of OTP, and has a basic
understanding of TLS/DTLS.

1.2 TLS/DTLS and TLS Predecessor, SSL

The Erlang SSL application implements the TLS/DTLS protocol for the currently supported versions, see the ssl(3)
manual page.

By default TLS is run over the TCP/IP protocol even though you can plug in any other reliable transport protocol
with the same Application Programming Interface (API) asthegen_t cp modulein Kernel. DTLS is by default run
over UDP/IP, which means that application data has no delivery guarentees. Other transports, such as SCTP, may be
supported in future rel eases.

If aclient and a server wants to use an upgrade mechanism, such as defined by RFC 2817, to upgrade aregular TCP/
I P connection to a TLS connection, this is supported by the Erlang SSL application API. This can be useful for, for
example, supporting HTTP and HTTPS on the same port and implementing virtual hosting. Note thisisa TLS feature
only.

1.2.1 Security Overview

To achieve authentication and privacy, the client and server perform a TLS/DTLS handshake procedure before
transmitting or receiving any data. During the handshake, they agree on a protocol version and cryptographic
algorithms, generate shared secrets using public key cryptographies, and optionally authenticate each other with digital
certificates.

1.2.2 Data Privacy and Integrity

A symmetric key algorithm has one key only. The key is used for both encryption and decryption. These algorithms
are fast, compared to public key algorithms (using two keys, one public and one private) and are therefore typicaly
used for encrypting bulk data.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 1

1.2 TLS/DTLS and TLS Predecessor, SSL

Thekeysfor the symmetric encryption are generated uniquely for each connection and are based on a secret negotiated
inthe TLS/DTLS handshake.

The TLS/DTLS handshake protocol and data transfer is run on top of the TLS/DTLS Record Protocol, which uses a
keyed-hash M essage A uthenticity Code (MAC), or aHash-based MAC (HMAC), to protect the message dataintegrity.
From the TLS RFC: "A Message Authentication Code is a one-way hash computed from a message and some secret
data. It is difficult to forge without knowing the secret data. Its purpose isto detect if the message has been altered.”

1.2.3 Digital Certificates

A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. The
certificate is signed with the private key of the issuer of the certificate. A chain of trust is built by having the issuer
in itsturn being certified by another certificate, and so on, until you reach the so called root certificate, which is self-
signed, that is, issued by itself.

Certificatesareissued by Certification Authorities (CAs) only. A handful of top CAsintheworld issueroot certificates.
Y ou can examine severa of these certificates by clicking through the menus of your web browser.

1.2.4 Peer Authentication

Authentication of the peer is done by public key path validation as defined in RFC 3280. This means basically the
following:

» Each certificate in the certificate chain isissued by the previous one.
* Thecertificates attributes are valid.
* Theroot certificate is atrusted certificate that is present in the trusted certificate database kept by the peer.

The server always sends a certificate chain as part of the TLS handshake, but the client only sends one if requested by
the server. If the client does not have an appropriate certificate, it can send an "empty" certificate to the server.

The client can choose to accept some path evaluation errors, for example, a web browser can ask the user whether
to accept an unknown CA root certificate. The server, if it requests a certificate, does however not accept any path
validation errors. It is configurable if the server isto accept or reject an "empty" certificate as response to a certificate
request.

1.2.5 TLS Sessions - PRE TLS-1.3

From the TLS RFC: "A TLS session is an association between a client and a server. Sessions are created by the
handshake protocol. Sessions define a set of cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security parameters for each connection."

Session data is by default kept by the SSL application in a memory storage, hence session data is lost at application
restart or takeover. Users can define their own callback module to handle session data storage if persistent data storage
isrequired. Session datais also invalidated when session database exceedsits limit or 24 hours after being saved (RFC
max lifetime recommendation). The amount of time the session datais to be saved can be configured.

By default the TLS/DTL S clientstry to reuse an available session and by default the TLS/DTL S servers agree to reuse
sessions when clients ask for it. See also Session Reuse Pre TLS-1.3

1.2.6 TLS-1.3 session tickets

InTLS 1.3 the session reuseisreplaced by a new session tickets mechanism based on the pre shared key concept. This
mechanism also obsoletes the session tickets from RFC5077, not implemented by this application. See also Session
Tickets and Session Resumptionin TLS-1.3

2 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

1.3 Using SSL application API

To seerelevant version information for sdl, call ssl : ver si ons/ 0.

To see all supported cipher suites, call ssl : ci pher _sui tes(al |) . Theavailable cipher suitesfor aconnection
depend on your certificate. Specific cipher suites that you want your connection to use can also be specified. Default
isto use the strongest available.

1.3.1 Setting up Connections

This section shows a small example of how to set up client/server connections using the Erlang shell. The returned
value of thessl socket isabbreviated with[. . .] asit can befairly large and is opaque.

Minimal Example

| The minimal setup is not the most secure setup of TLS/DTLS. |

To set up client/server connections:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Createa TLSlisten socket: (To run DTLS add the option { protocol, dtls})
2 server> {ok, ListenSocket} =
ssl:listen(9999, [{certfile, "cert.pem"}, {keyfile, "key.pem"},{reuseaddr, true}l).
{ok, {sslsocket, [...1}}

Step 3: Do atransport accept on the TLS listen socket:

3 server> {ok, TLSTransportSocket} = ssl:transport accept(ListenSocket).
{ok, {sslsocket, [...]1}}

Step 4: Start the client side:

1 client> ssl:start().
ok

Torun DTLS add the option { protocal, dtls} to third argument.

2 client> {ok, Socket} = ssl:connect("localhost", 9999, [], infinity).
{ok,{sslsocket, [...]1}}

Step 5: Do the TLS handshake:

4 server> {ok, Socket} = ssl:handshake(TLSTransportSocket).
{ok, {sslsocket, [...]1}}

Step 6: Send amessage over TLS:

5 server> ssl:send(Socket, "foo").
ok

Step 7: Flush the shell message queue to see that the message was sent on the server side:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 3

1.3 Using SSL application API

3 client> flush().
Shell got {ssl,{sslsocket,[...]1},"fo0"}
ok

Upgrade Example - TLS only

To upgrade a TCP/IP connection to a TLS connection, the client and server must agree to do so. The agreement
can be accomplished by using a protocol, for example, the one used by HTTP specified in RFC 2817.

To upgradeto a TL S connection:
Step 1: Start the server side:

1 server> ssl:start().
ok

Step 2: Create anormal TCP listen socket:

2 server> {ok, ListenSocket} = gen tcp:listen(9999, [{reuseaddr, true}l).
{ok, #Port<0.475>}

Step 3: Accept client connection:

3 server> {ok, Socket} = gen tcp:accept(ListenSocket).
{ok, #Port<0.476>}

Step 4: Start theclient side:

1 client> ssl:start().
ok

2 client> {ok, Socket} = gen tcp:connect("localhost", 9999, [], infinity).

Step 5: Ensureact i ve issetto f al se before trying to upgrade a connection to a TLS connection, otherwise TLS
handshake messages can be delivered to the wrong process:

4 server> inet:setopts(Socket, [{active, false}]).
ok

Step 6: Do the TLS handshake:
5 server> {ok, TLSSocket} = ssl:handshake(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}]).
{ok, {sslsocket,[...]1}}

Step 7: Upgrade to a TLS connection. The client and server must agree upon the upgrade. The server must call
ssl : handshake/ 2 beforetheclient callsssl : connect/ 3.

3 client>{ok, TLSSocket} = ssl:connect(Socket, [{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"}, {keyfile, "key.pem"}1, infinity).
{ok,{sslsocket,[...]1}}

Step 8: Send amessage over TLS:

4 client> ssl:send(TLSSocket, "foo").
ok

Step 9: Setacti ve true onthe TLS socket:

4 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

4 server> ssl:setopts(TLSSocket, [{active, true}l]).
ok

Step 10: Flush the shell message queue to see that the message was sent on the client side:

5 server> flush().
Shell got {ssl,{sslsocket,[...]1},"foo"}
ok

1.3.2 Customizing cipher suites
Fetch default cipher suite list for aTLS/DTLS version. Change default to all to get all possible cipher suites.

1> Default = ssl:cipher suites(default, 'tlsvl1l.2').
[#{cipher => aes 256 gcm,key exchange => ecdhe ecdsa,
mac => aead,prf => sha384},]

In OTP 20 it is desirable to remove all cipher suites that uses rsa kexchange (removed from default in 21)

2> NoRSA =
ssl:filter cipher suites(Default,
[{key exchange, fun(rsa) -> false;
(_) -> true end}]).
[...]

Pick just afew suites

3> Suites =
ssl:filter cipher suites(Default,
[{key exchange, fun(ecdh ecdsa) -> true;
() -> false end},
{cipher, fun(aes 128 cbc) ->true;
() ->false end}]).
[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf}]

Make some particular suites the most preferred, or least preferred by changing prepend to append.

4>ssl:prepend cipher suites(Suites, Default).
[#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,
mac => sha256,prf => sha256},
#{cipher => aes 128 cbc,key exchange => ecdh ecdsa,mac => sha,
prf => default prf},
#{cipher => aes 256 cbc,key exchange => ecdhe ecdsa,
mac => sha384,prf => sha384}, ...]

1.3.3 Using an Engine Stored Key
Erlang sd application is able to use private keys provided by OpenSSL engines using the following mechanism:

1> ssl:start().
ok

Load a crypto engine, should be done once per engine used. For example dynamically load the engine called
MyEngi ne:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 5

1.3 Using SSL application API

2> {ok, EngineRef} =
crypto:engine load(<<"dynamic">>,

[{<<"SO PATH">>, "/tmp/user/engines/MyEngine"},<<"LOAD">>],[]).
{ok,#Ref<0.2399045421.3028942852.173962>}

Create amap with the engine information and the algorithm used by the engine:

3> PrivKey =
#{algorithm => rsa,
engine => EngineRef,
key id => "id of the private key in Engine"}.

Use the map in the sdl key option:

4> {ok, SSLSocket} =

ssl:connect("localhost", 9999,
[{cacertfile, "cacerts.pem"},
{certfile, "cert.pem"},
{key, PrivKey}], infinity).

See also crypto documentation

1.3.4 Session Reuse pre TLS 1.3

Clients can reguest to reuse asession established by apreviousfull handshake between that client and server by sending
theid of the session in the initial handshake message. The server may or may not agreeto reuseit. If agreed the server
will send back theid and if not it will send anew id. The ssl application has several options for handling session reuse.

On the client side the ssl application will save session data to try to automate session reuse on behalf of the client
processes on the Erlang node. Note that only verified sessions will be saved for security reasons, that is session
resumption relies on the certificate validation to have been run in the origina handshake. To minimize memory
consumption only unique sessions will be saved unless the special save value is specified for the following option
{reuse_sessi ons, bool ean() | save} inwhich caseafull handhake will be performed and that specific
session will have been saved before the handshake returns. The session id and even an opaque binary containing the
session data can be retrieved using ssl : connecti on_i nf or mati on/ 1 function. A saved session (guaranteed
by the save option) can be explicitly reused using {r euse_sessi on, Sessi onl d}. Also it is possible for
the client to reuse a session that is not saved by the ssl application using { r euse_sessi on, {Sessionld,
SessionDat a}}.

When using explicit session reuse, it is up to the client to make sure that the session being reused is for the correct
server and has been verified.

Here follows a client side example, divide into several stepsfor readability.
Step 1 - Automated Session Reuse

6 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

1> ssl:start().
ok

2> {ok, C1} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"}]).

{ok, {sslsocket, {gen tcp,#Port<0.7>,tls connection,undefined}, ...}}

3> ssl:connection _information(Cl, [session id]).

{ok, [{session id,<<95,32,43,22,35,63,249,22,26,36,106,
152,49,52,124,56,130,192,137, 161,
146,145,164,232,...>>}1}

% Reuse session if possible, note that if C2 is really fast the session
% data might not be available for reuse.
4> {ok, C2} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']},
{cacertfile, "cacerts.pem"},
{reuse sessions, true}]).
{ok, {sslsocket, {gen tcp,#Port<0.8>,tls connection,undefined}, ...1}}

[
“©
[

“©

%% C2 got same session ID as client one, session was automatically reused.
5> ssl:connection information(C2, [session id]).
{ok, [{session_id,<<95,32,43,22,35,63,249,22,26,36, 106,
152,49,52,124,56,130,192,137,161,
146,145,164,232, ...>>}]}

Step 2- Using save Option

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 7

1.3 Using SSL application API

%% We want save this particular session for reuse although it has the same basis as
6> {ok, C3} = ssl:connect("localhost", 9999, [{verify, verify peer},

{versions, ['tlsvl.2']l},

{cacertfile, "cacerts.pem"},

{reuse _sessions, save}]).
{ok, {sslsocket, {gen tcp,#Port<0.9>,tls connection,undefined}, ...1}}

%% A full handshake is performed and we get a new session ID
7> {ok, [{session _id, ID}]} = ssl:connection_information(C3, [session_id]).
{ok, [{session id,<<91,84,27,151,183,39,84,90,143, 141,
121,190,66,192,10,1,27,192,33,95,78,
8,34,180,...>>}1}

%% Use automatic session reuse
8> {ok, C4} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']l},
{cacertfile, "cacerts.pem"},
{reuse _sessions, true}]).
{ok, {sslsocket, {gen_tcp,#Port<0.10>,tls connection,
undefined}, ...1}}

%% The "saved" one happened to be selected, but this is not a guarantee

9> ssl:connection information(C4, [session id]).

{ok, [{session id,<<91,84,27,151,183,39,84,90,143, 141,
121,190,66,192,10,1,27,192,33,95,78,
8,34,180,...>>}]}

%% Make sure to reuse the "saved" session
10> {ok, C5} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"},
{reuse session, ID}]).
{ok, {sslsocket, {gen_tcp,#Port<0.11>,tls connection,
undefined}, ...1}}

11> ssl:connection_information(C5, [session id]).

{ok, [{session id,<<91,84,27,151,183,39,84,90,143, 141,
121,190,66,192,10,1,27,192,33,95,78,
8,34,180,...>>}1}

Step 3 - Explicit Session Reuse

8 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

%% Preform a full handshake and the session will not be saved for reuse
12> {ok, C9} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']l},
{cacertfile, "cacerts.pem"},
{reuse sessions, false},
{server _name indication, disable}]).
{ok, {sslsocket, {gen tcp,#Port<0.14>,tls connection, ...}}

%% Fetch session ID and data for C9 connection
12> {ok, [{session_id, ID1}, {session data, SessData}]} =
ssl:connection information(C9, [session id, session datal).
{ok, [{session id,<<9,233,4,54,170,88,170,180,17,96,202,
85,85,99,119,47,9,68,195,50,120,52,
130,239, ...>>},
{session data,<<131,104,13,100,0,7,115,1601,115,115,105,
111,110,109,0,0,0,32,9,233,4,54,170,...>>}]}

%% Explicitly reuse the session from C9
13> {ok, C10} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2']l},
{cacertfile, "cacerts.pem"},
{reuse session, {ID1, SessData}}]).
{ok, {sslsocket, {gen_tcp,#Port<0.15>,tls connection,
undefined}, ...}}

14> ssl:connection_information(C10, [session_ id]).

{ok, [{session id,<<9,233,4,54,170,88,170,180,17,96,202,
85,85,99,119,47,9,68,195,50,120,52,
130,239, ...>>}]1}

Step 4 - Not Possible to Reuse Explicit Session by ID Only

%% Try to reuse the session from C9 using only the id
15> {ok, E} = ssl:connect("localhost", 9999, [{verify, verify peer},
{versions, ['tlsvl.2'l},
{cacertfile, "cacerts.pem"},
{reuse session, ID1}]).
{ok, {sslsocket, {gen tcp,#Port<0.18>,tls connection,
undefined}, ...}}

This will fail (as it is not saved for reuse)

and a full handshake will be performed, we get a new id.
> ssl:connection information(E, [session id]).
ok, [{session_id,<<87,46,43,126,175,68,160,153,37,29,
196,240,65,160,254,88,65,224,18,63,
18,17,174,39,...>>}1}

On the server side thethe { r euse_sessi ons, bool ean()} option determinesif the server will save session
data and allow session reuse or not. This can be further customized by the option { r euse_sessi on, fun()}
that may introduce alocal policy for session reuse.

1.3.5 Session Tickets and Session Resumption in TLS 1.3

TLS 1.3 introduces a new secure way of resuming sessions by using session tickets. A session ticket is an opaque data
structure that is sent inthe pre_shared key extension of a ClientHello, when aclient attempts to resume a session with
keying material from a previous successful handshake.

Session tickets can be stateful or stateless. A stateful session ticket isadatabase reference (session ticket store) and used
with stateful servers, while astatel essticket isaself-encrypted and self-authenticated data structure with cryptographic
keying material and state data, enabling session resumption with statel ess servers.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 9

1.3 Using SSL application API

The choice between stateful or statel ess depends on the server requirements as the session tickets are opaque for the
clients. Generaly, stateful tickets are smaller and the server can guarantee that tickets are only used once. Stateless
tickets contain additional data, require less storage on the server side, but they offer different guarantees against anti-
replay. See also Anti-Replay Protectionin TLS 1.3

Session tickets are sent by servers on newly estalished TL S connections. The number of tickets sent and their lifetime
are configurable by application variables. See also SSL's configuration.

Session tickets are protected by application traffic keys, and in statel esstickets, the opague data structure itself is self-
encrypted.

An example with automatic and manual session resumption:
Step 1 (server): Start the server:

{ok, } = application:ensure all started(ssl).
LOpts = [{certfile, "cert.pem"},
{keyfile, "key.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{session tickets, stateless}].
{ok, LSock} = ssl:listen(8001, LOpts).
{ok, CSock} = ssl:transport accept(LSock).

Step 2 (client): Start the client and connect to server:

{ok, _}
COpts =

= application:ensure all started(ssl).
[{cacertfile, "cert.pem"},

{versions, ['tlsvl.2',6 'tlsvl.3']},
{log level, debug},

{session tickets, auto}].
ssl:connect("localhost", 8001, COpts).

Step 3 (server): Start the TLS handshake:
ssl:handshake(CSock) .

A connection is established using a full handshake. Below isa summary of the exchanged messages:
>>> TLS 1.3 Handshake, ClientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...
<<< Handshake, Certificate ...
<<< Handshake, CertificateVerify ...
<<< Handshake, Finished ...
>>> Handshake, Finished ...
<<< Post-Handshake, NewSessionTicket ...

At thispoint the client has stored the received session tickets and ready to use them when establishing new connections
to the same server.

Step 4 (server): Accept a new connection on the server:
{ok, CSock2} = ssl:transport accept(LSock).

Step 5 (client): Make a new connection:
ssl:connect("localhost", 8001, COpts).

Step 6 (server): Start the handshake:
ssl:handshake(CSock2).

The second connection is a session resumption using keying material from the previous handshake:

10 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

>>> TLS 1.3 Handshake, ClientHello ...
<<< TLS 1.3 Handshake, ServerHello ...
<<< Handshake, EncryptedExtensions ...
<<< Handshake, Finished ...

>>> Handshake, Finished ...

<<< Post-Handshake, NewSessionTicket ...

Manual handling of session tickets is also supported. In manual mode, it is the responsibility of the client to handle
received session tickets.

Step 7 (server): Accept anew connection on the server:
{ok, CSock3} = ssl:transport accept(LSock).

Step 8 (client): Make a new connection to server:

{ok, } = application:ensure all started(ssl).
COpts2 = [{cacertfile, "cert.pem"},

{versions, ['tlsvl.2',6 'tlsvl.3']},

{log level, debug},

{session tickets, manual}].
ssl:connect("localhost", 8001, COpts).

Step 9 (server): Start the handshake:
ssl:handshake(CSock3).

After the handshake is performed, the user process receives messages with the tickets sent by the server.
Step 10 (client): Receive a new session ticket:

Ticket = receive {ssl, session ticket, { , TicketData}} -> TicketData end.
Step 11 (server): Accept a new connection on the server:

{ok, CSock4} = ssl:transport accept(LSock).
Step 12 (client): Initiate a new connection to the server with the session ticket received in Step 10:

{ok, } = application:ensure all started(ssl).

COpts2 = [{cacertfile, "cert.pem"},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{log level, debug},
{session tickets, manual},
{use ticket, [Ticketl}].
ssl:connect("localhost", 8001, COpts).

Step 13 (server): Start the handshake:

ssl:handshake(CSock3).

1.3.6 Early Data in TLS 1.3

TLS 1.3 dlows clients to send data on the first flight if the endpoints have a shared crypographic secret (pre-shared
key). This means that clients can send early data if they have a valid session ticket received in a previous successful
handshake. For more information about session resumption see Session Tickets and Session Resumptionin TLS 1.3.

The security properties of Early Data are weaker than other kinds of TLS data. This datais not forward secret, and it
isvulnerable to replay attacks. For available mitigation strategies see Anti-Replay Protection in TLS 1.3.

In normal operation, clients will not know which, if any, of the available mitigation strategies servers actually
implement, and hence must only send early datawhich they deem safe to be replayed. For example, idempotent HTTP

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 11

1.3 Using SSL application API

operations, such asHEAD and GET, can usually be regarded as safe but even they can be exploited by alarge number
of replays causing resource limit exhaustion and other similar problems.

An example of sending early data with automatic and manual session ticket handling:

‘ The Early Datafeature is experimental in this version of OTP. ‘

Server (with NSS key logging)

early data server() ->
application:load(ssl),
{ok, } = application:ensure all started(ssl),
Port = 11029,
LOpts = [{certfile, ?SERVER CERT},
{keyfile, ?SERVER KEY},
{reuseaddr, true},
{versions, ['tlsvl.2',6 'tlsvl.3']},
{session tickets, stateless},
{early data, enabled},
{keep secrets, true} %% Enable NSS key log (debug option)
]I
{ok, LSock} = ssl:listen(Port, LOpts),
%% Accept first connection
{ok, CSock0} = ssl:transport accept(LSock),
{ok, } = ssl:handshake(CSock0),
%% Accept second connection
{ok, CSockl} = ssl:transport accept(LSock),
{ok, Sock} = ssl:handshake(CSockl),
Sock.

Exporting the secrets (optional)

{ok, [{keylog, KeylogItems}]} = ssl:connection _information(Sock, [keylogl).
file:write_file("key.log", [[KeylogItem,$\n] || KeylogItem <- KeylogItems]).

Client (automatic ticket handling):

early data auto() ->
%% First handshake 1-RTT - get session tickets
application:load(ssl),
{ok, } = application:ensure all started(ssl),
Port 11029,
Data <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
COpts@ = [{cacertfile, ?CA CERT},
{versions, ['tlsvl.2',6 'tlsvl.3'l},
{session tickets, auto}l],
{ok, Sock0} = ssl:connect("localhost", Port, COpts0),

%% Wait for session tickets
timer:sleep(500),
%% Close socket if server cannot handle multiple connections e.g. openssl s server
ssl:close(Sock0),

%% Second handshake O-RTT
COptsl = [{cacertfile, ?CA CERT},
{versions, ['tlsvl.2',6 'tlsvl.3'l},
{session tickets, auto},
{early data, Data}l,
{ok, Sock} = ssl:connect("localhost", Port, COptsl),
Sock.

12 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.3 Using SSL application API

Client (manual ticket handling):

early data manual() ->
%% First handshake 1-RTT - get session tickets
application:load(ssl),
{ok, } = application:ensure all started(ssl),

Port = 11029,
Data = <<"HEAD / HTTP/1.1\r\nHost: \r\nConnection: close\r\n">>,
COptsO = [{cacertfile, ?CA CERT},
{versions, ['tlsvl.2', 'tlsvl.3']},
{session_ tickets, manual}l],
{ok, Sock0} = ssl:connect("localhost", Port, COptsO),

%% Wait for session tickets
Ticket =
receive
{ssl, session_ ticket, Ticket0} ->
Ticket0
end,

%% Close socket if server cannot handle multiple connections
%% e.g. openssl s server
ssl:close(Sock0),

%% Second handshake O-RTT
COptsl = [{cacertfile, ?CA CERT},
{versions, ['tlsvl.2', 'tlsvl.3'l},

{session tickets, manual},
{use ticket, [Ticketl]},
{early data, Data}],

{ok, Sock} = ssl:connect("localhost", Port, COptsl),

Sock.

1.3.7 Anti-Replay Protection in TLS 1.3

The TLS 1.3 protocol does not provide inherent protection for replay of O-RTT data but describes mechanisms
that SHOULD be implemented by compliant server implementations. The implementation of TLS 1.3 in the SSL
application employs all standard methods to prevent potential threats.

Single-usetickets

This mechanism is available with stateful session tickets. Session tickets can only be used once, subsequent use of
the same ticket resultsin afull handshake. Stateful servers enforce this rule by maintaining a database of outstanding
valid tickets.

Client Hello Recording

This mechanism is available with stateless session tickets. The server records a unique value derived from
the ClientHello (PSK binder) in a given time window. The ticket's age is verified by using both the
"obsfuscated_ticket_age" and an additional timestamp encrypted in the ticket data. Asthe used datastore allows false
positives, apparent replays will be answered by doing afull 1-RTT handshake.

Freshness Checks

Thismechanismisavailablewith the statel ess session tickets. Astheticket data has an embedded timestamp, the server
can determine if a ClientHello was sent reasonably recently and accept the O-RTT handshake, otherwise if falls back
toafull 1-RTT handshake. This mechanism istightly coupled with the previous one, it prevents storing an unlimited
number of ClientHellos.

The current implementation uses a pair of Bloom filters to implement the last two mechanisms. Bloom filters are fast,
memory-efficient, probabilistic data structures that can tell if an element may be in a set or if it is definitely not in
the set.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 13

1.4 Using TLS for Erlang Distribution

If the option anti_replay isdefined in the server, apair of Bloom filters (current and old) are used to record incoming
ClientHello messages (it is the unique binder value that is actually stored). The current Bloom filter is used for
W ndowsSi ze secondsto store new elements. At the end of the time window the Bloom filters arerotated (the cur rent
Bloom filter becomes the old and an empty Bloom filter is set as current.

The Anti-Replay protection feature in stateless servers executes in the following steps when a new ClientHello is
received:
* Reported ticket age (obfuscated ticket age) shall be less than ticket lifetime.

» Actual ticket age shall belessthan theticket lifetime (statel ess session tickets contain the servers timestamp when
the ticket was issued).

e Ticket shall be used within specified time window (freshness checks).

» If al above checks passed both current and old Bloom filters are checked to detect if binder was already seen.
Being a probabilistic data structure, false positives can occur and they trigger a full handshake.

e |If the binder is not seen, the binder is validated. If the binder is valid, the server proceeds with the O-RTT
handshake.

1.4 Using TLS for Erlang Distribution

This section describes how the Erlang distribution can use TLS to get extra verification and security.

The Erlang distribution can in theory use almost any connection-based protocol as bearer. However, a module
that implements the protocol-specific parts of the connection setup is needed. The default distribution module is
i net _tcp_dist inthe Kernel application. When starting an Erlang node distributed, net _ker nel uses this
module to set up listen ports and connections.

Inthe SSL application, an extradistribution module, i net _t | s_di st, canbeused asan aternative. All distribution
connectionswill use TLS and al participating Erlang nodes in adistributed system must use this distribution module.

The security level depends on the parameters provided to the TLS connection setup. Erlang node cookies are however
always used, as they can be used to differentiate between two different Erlang networks.

To set up Erlang distribution over TLS:

e Step 1: Build boot scripts including the SSL application.

e Step 2: Specify the distribution module for net _ker nel .
* Step 3: Specify the security options and other SSL options.
e Step 4: Set up the environment to always use TLS.

The following sections describe these steps.

1.4.1 Building Boot Scripts Including the SSL Application

Boot scriptsare built using the sy st ool s utility in the SASL application. For moreinformation onsyst ool s, see
the SASL documentation. Thisis only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
bi n directory of the Erlang distribution. The source for the script is found under the Erlang installation top directory
under r el eases/ <OTP version>/start_clean.rel.

Do the following:

e Copy that script to another location (and preferably another name).

e Add the applications Crypto, Public Key, and SSL with their current version numbers after the STDLIB
application.

The following shows an example. r el filewith TLS added:

14 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

{release, {"OTP APN 181 01","R15A"}, {erts, "5.9"},
[{kernel, "2.15"},

{stdlib,"1.18"},

{crypto, "2.0.3"},

{public_key, "0.12"},

{asnl, "4.0"},

{ssl, "5.0"}

1}.

Theversion numbersdiffer inyour system. Whenever one of the applicationsincluded in the script isupgraded, change
the script.

Do the following:

» Build the boot script.
Assumingthe.rel fileisstoredinafilestart _ssl.rel inthe current directory, a boot script can be
built as follows:

1> systools:make script("start ssl",[]).

Thereisnow ast art _ssl . boot filein the current directory.

Do the following:

e Test the boot script. To do this, start Erlang with the - boot command-line parameter specifying this boot script
(with itsfull path, but without the . boot suffix). In UNIX it can look asfollows:

$ erl -boot /home/me/ssl/start ssl
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
1> whereis(ssl manager).
<0.41.0>

Thewher ei s function-call verifies that the SSL application is started.

Asan aternative to building a bootscript, you can explicitly add the path to the SSL ebi n directory on the command
line. Thisisdone with command-line option - pa. Thisworksasthe SSL application does not need to be started for the
distribution to come up, as aclone of the SSL application is hooked into the Kernel application. So, aslong asthe SSL
application code can be reached, the distribution starts. The - pa method is only recommended for testing purposes.

The clone of the SSL application must enable the use of the SSL code in such an early bootstage as needed to set
up the distribution. However, this makes it impossible to soft upgrade the SSL application.

1.4.2 Specifying Distribution Module for net_kernel

The distribution module for TLSisnamed i net _t | s_di st and is specified on the command line with option -
prot o_di st.Theargumentto- pr ot o_di st istobethe module namewithout suffix _di st . So, thisdistribution
moduleis specified with - pr ot o_di st i net _t| s onthecommand line.

Extending the command line gives the following:
$ erl -boot /home/me/ssl/start ssl -proto dist inet tls

For the distribution to be started, give the emulator a name as well:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

1.4 Using TLS for Erlang Distribution

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with "G)
(ssl _test@myhost)1>

However, a node started in this way refuses to talk to other nodes, as no TLS parameters are supplied (see the next
section).

1.4.3 Specifying TLS Options

The TL S distribution options can be written into afile that is consulted when the node is started. Thisfile nameisthen
specified with the command line argument - ssl _di st _optfil e.

Any available TLS option can be specified in an options file, but note that options that take af un() hasto use the
syntax f un Mod: Func/ Ari t y since afunction body cannot be compiled when consulting afile.

Do not tamper with the socket options | i st, bi nary, acti ve, packet, nodel ay and del i ver since they
are used by the distribution protocol handler itself. Other raw socket options such as packet _si ze may interfere
severely, so beware!

For TLSto work, at least apublic key and a certificate must be specified for the server side. In the following example,
the PEM file" / home/ me/ ssl / er| server. pem' contains both the server certificate and its private key.

Create afile named for example" / hone/ ne/ ssl / ssl _test @yhost. conf":

[{server,
[{certfile, "/home/me/ssl/erlserver.pem"},
{secure renegotiate, true}l},

{client,
[{secure renegotiate, true}l}].

And then start the node like this (line breaks in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

Theoptionsinthe{ server, Opts} tupleareused when calling ssl : ssl _accept/ 3, and the options in the
{client, Opts} tupleareusedwhencalingssl:connect/ 4.

For the client, the option { ser ver _nane_i ndi cati on, atomto_list(TargetNode)} isadded when
connecting. This makes it possible to use the client option { veri fy, verify_peer}, and theclient will verify
that the certificate matches the node name you are connecting to. This only worksif the the server certificate isissued
tothenameat om to_I| i st (Tar get Node) .

For the server it is aso possible to use the option {verify, verify_peer} and the server will only accept
client connections with certificates that are trusted by a root certificate that the server knows. A client that presents
an untrusted certificate will be rejected. This option is preferably combined with {fai | _i f _no_peer _cert,
true} or aclient will still be accepted if it does not present any certificate.

A node started in thisway is fully functional, using TL S as the distribution protocol.

1.4.4 Specifying TLS Options (Legacy)

Asin the previous section the PEM file" / hone/ me/ ssl / er| server. peni contains both the server certificate
and its private key.

Ontheer| command line you can specify options that the TLS distribution adds when creating a socket.

16 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.4 Using TLS for Erlang Distribution

The simplest TLS options in the following list can be specified by adding the prefix server _or cl i ent _ tothe
option name;

« certfile

o keyfile

e password

 cacertfile

e verify

o verify_fun (writeas{ Modul e, Function, Initial UserState})
e crl_check

e crl _cache (write as Erlang term)

e reuse_sessions

* secure_renegotiate

 depth

e hibernate_after

e ci phers (useold string format)

Note that veri fy_f un needs to be written in a different form than the corresponding TLS option, since funs are
not accepted on the command line.

The server can also takethe optionsdhfil eandfail _if_no_peer cert (aso prefixed).

cl i ent _-prefixed options are used when the distribution initiates a connection to another node. ser ver _-prefixed
options are used when accepting a connection from a remote node.

Raw socket options, such aspacket and si ze must not be specified on the command line.

The command-line argument for specifying the TLS options is named - ssl _di st _opt and is to be followed by
pairs of SSL options and their values. Argument - ssl _di st _opt can be repeated any number of times.

An example command line doing the same as the exampl e in the previous section can now look asfollows (line breaks
in the command are for readability, and shall not be there when typed):

$ erl -boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile "/home/me/ssl/erlserver.pem"
-ssl dist opt server secure renegotiate true client secure renegotiate true
-sname ssl_test

Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with ~G)
(ssl_test@myhost)1>

1.4.5 Setting up Environment to Always Use TLS (Legacy)

A convenient way to specify arguments to Erlang is to use environment variable ERL_FLAGS. All the flags needed
to use the TLS distribution can be specified in that variable and are then interpreted as command-line arguments for
all subsequent invocations of Erlang.

In aUnix (Bourne) shell, it can look as follows (line breaks are for readability, they are not to be there when typed):

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 17

1.5 Standards Compliance

$ ERL_FLAGS="-boot /home/me/ssl/start ssl -proto dist inet tls
-ssl dist opt server certfile /home/me/ssl/erlserver.pem
-ssl dist opt server secure renegotiate true client secure renegotiate true"
$ export ERL_FLAGS
$ erl -sname ssl test
Erlang (BEAM) emulator version 5.0 [source]

Eshell V5.0 (abort with "G)

(ssl _test@myhost)1> init:get arguments().
[{root,["/usr/local/erlang"]},

{progname, ["erl "1},

{sname, ["ss1l test"]},

{boot, ["/home/me/ss1/start ssl"1},

{proto _dist,["inet tls"]},

{ssl dist opt,["server certfile","/home/me/ssl/erlserver.pem"]},
{ssl dist opt,["server secure renegotiate","true",

"client secure renegotiate","true"]
{home, ["/home/me"]}]

Thei ni t: get _argunent s() cal verifiesthat the correct arguments are supplied to the emulator.

1.4.6 Using TLS distribution over IPv6

It is possible to use TLS distribution over 1Pv6 instead of IPv4. To do this, pass the option - prot o_di st
inet6_tl s instead of - proto_di st inet_tls when starting Erlang, either on the command line or in the
ERL_FLAGS environment variable.

An example command line with this option would look like this:

$ erl -boot /home/me/ssl/start ssl -proto dist inet6 tls
-ssl dist optfile "/home/me/ssl/ssl test@myhost.conf"
-sname ssl_test

A node started in this way will only be able to communicate with other nodes using TL S distribution over |Pv6.

1.5 Standards Compliance

1.5.1 Purpose

This section describes the current state of standards compliance of the ssl application.

1.5.2 Common (pre TLS 1.3)

» For security reasons RSA key exchange cipher suites are no longer supported by default, but can be configured.
(OTP21)

» For security reasons DES cipher suites are no longer supported by default, but can be configured. (OTP 20)

» For security reasons 3DES cipher suites are no longer supported by default, but can be configured. (OTP 21)

* Renegotiation Indication Extension RFC 5746 is supported

« Ephemeral Diffie-Hellman cipher suites are supported, but not Diffie Hellman Certificates cipher suites.

» Elliptic Curve cipher suites are supported if the Crypto application supports it and named curves are used.

» Export cipher suites are not supported asthe U.S. lifted its export restrictions in early 2000.

* |DEA cipher suites are not supported as they have become deprecated by the TL S 1.2 specification so it is not
motivated to implement them.

» Compression is not supported.

18 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

1.5 Standards Compliance

1.5.3 Common

e CRL validation is supported.
« Policy certificate extensions are not supported.
* 'Server Name Indication’ extension (RFC 6066) is supported.

« Application Layer Protocol Negotiation (ALPN) and its successor Next Protocol Negotiation (NPN) are
supported.

e Itispossibleto use Pre-Shared Key (PSK) and Secure Remote Password (SRP) cipher suites, but they are not
enabled by default.

1.5.4 SSL 2.0
For security reasons SSL-2.0 is not supported. Interoperability with SSL-2.0 enabled clients dropped. (OTP 21)

1.5.5 SSL 3.0

For security reasons SSL-3.0 is no longer supported at all. (OTP 23)
For security reasons SSL-3.0 is ho longer supported by default, but can be configured. (OTP 19)

1.5.6 TLS1.0
For security reasons TLS-1.0 is no longer supported by default, but can be configured. (OTP 22)

157 TLS 1.1
For security reasons TLS-1.1 is no longer supported by default, but can be configured. (OTP 22)

1.5.8 TLS 1.2
Supported

1.5.9 DTLS 1.0
For security reasons DTLS-1.0 (based on TLS 1.1) isno longer supported by default, but can be configured. (OTP 22)

1.5.10 DTLS 1.2
Supported (based on TLS 1.2)

1.5.11 DTLS 1.3
Not yet supported

1.5.12 TLS 1.3

OTP-22 introduces support for TLS 1.3. The current implementation supports a selective set of cryptographic
agorithms:

e Key Exchange: ECDHE

e Groups: al standard groups supported for the Diffie-Hellman key exchange

» Ciphers: all cipher suites are supported

e Signature Algorithms: All algorithms form RFC 8446

* Cetificates: RSA and ECDSA keys

Other notable features:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 19

href

1.5 Standards Compliance

» PSK and session resumption is supported (stateful and statel ess tickets)
e Anti-replay protection using Bloom-filters with statel ess tickets

e Early dataand O-RTT is supported
« Key and Initialization Vector Update is supported

For more detailed information see the Standards Compliance below.
The following table describes the current state of standards compliance for TLS 1.3.

(C = Compliant, NC = Non-Compliant, PC = Partially-Compliant, NA = Not Applicable)

Section Feature State Since
1.3. Updates Affecting
TLS1.2 ¢ 22
Version downgrade
. . C 22
protection mechanism
RSASSA-PSS signature PC 23
schemes
supported versions C 2
(ClientHello) extension
sgnatgre_al gorithms_cert c 2
extension
2. Protocol Overview PC 22
(EC)DHE C 22
PSK-only NC
PSK with (EC)DHE C 222
2.1. Incorrect DHE
share HelloRetryRequest C 22
2.2. Resumption and
Pre-Shared Key (PSK) ¢ 222
2.3.0-RTT Data PC 233
4.1.1. Qr_yptographw C 299
Negotiation
suppor.ted_groups C 2
extension
sgnatl_Jre_aI gorithms C 2
extension
pre_shared key extension |C 22.2

20 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

4.1.2. Client Hello Client PC 221
server_name (RFC6066) | C 232
max_fragment_length
(RFC6066) ¢ 230
status _request (RFC6066) | NC
supported_groups
(RFC7919) c 221
signature_algorithms
(RFC8446) c 221
use_srtp (RFC5764) NC
heartbeat (RFC6520) NC
application _layer protocol jegotiation
(RFC7301) & 221
signed_certificate timestam PNe
(RFC6962)
client_certificate type NG
(RFC7250)
server_certificate type NG
(RFC7250)
padding (RFC7685) NC
key_share (RFC8446) C 221
pre_shared key
(RFC8446) ¢ 222
psk_key exchange modes
(RFC8446) c 22.2
early data (RFC8446) C 233
cookie (RFC8446) C 231
supported _versions
(RFCB8446) c 221
certificate_authorities NC
(RFC8446)
oid_filters (RFC8446) NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 21

href

1.5 Standards Compliance

post_handshake auth

(RFCB8446) NC

signature_algorithms_cert

(RFC8446) c 221
Server PC 22
server_name (RFC6066) |C 23.2
max_fragment_length C 230

(RFC6066)

status_request (RFC6066) | NC

supported_groups

(RFC7919) c 22
signature_algorithms

(RFC8446) c 22
use_srtp (RFC5764) NC

heartbeat (RFC6520) NC
application_layer_protocol_pegotiation

(RFC7301) & 221
signed_certificate timestam Pne

(RFC6962)

client_certificate type NC

(RFC7250)

server_certificate type NC

(RFC7250)

padding (RFC7685) NC

key share (RFC8446) C 22
pre_shared key

(RFC8446) c 22.2
psk_key exchange modes

(RFC8446) c 22.2
early_data (RFC8446) C 233
cookie (RFC8446) C 231
supported versions C 2o

(RFC8446)

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

1.5 Standards Compliance

certificate_authorities

(RFC8446) NC

oid_filters (RFC8446) NC

post_handshake auth NC

(RFCB8446)

signature_algorithms_cert

(RFC8446) ¢ 22
4.1.3. Server Hello Client C 22.2

Version downgrade C 221

protection '

key share (RFC8446) C 221

pre_shared key

(RFCB8446) c 222

supported versions

(RFCB8446) ¢ 221

Server C 22.2

Version downgrade C 2

protection

key share (RFC8446) C 22

pre_shared key

(RFC8446) c 22:2

supported _versions

(RFCB8446) c 22
4.1.4. Hello Retry
Request Server C 22

key share (RFC8446) C 22

cookie (RFC8446) C 231

supported _versions

(RFC8446) c 22
4.2.1. Supported Client c 21
Versions

Server C 22
4.2.2. Cookie Client C 231

Ericsson AB. All Rights Reserved.:

Secure Socket Layer | 23

href
href
href
href
href
href

1.5 Standards Compliance

Server C 231
:ég} if'hgnqzt”re Client C 23
rsa_pkcsl sha256 C 22.1
rsa_pkcsl sha384 C 22.1
rsa_pkcsl sha512 C 221
ecdsa secp256rl sha256 |C 221
ecdsa secp384rl sha3g84d | C 22.1
ecdsa_secp521rl _shab12 | C 22.1
rsa_pss rsae sha256 C 22.1
rsa_pss rsae sha3g4 C 22.1
rsa_pss rsae shab12 C 221
ed25519 NC
ed448 NC
rsa_pss pss sha?56 C 23
rsa_pss pss sha3gd4 C 23
rsa_pss pss shabl2 C 23
rsa_pkcsl shal C 221
ecdsa_shal C 221
Server PC 22
rsa_pkcsl sha256 C 22
rsa_pkcsl sha384 C 22
rsa_pkcsl sha512 C 22
ecdsa secp256rl sha256 |C 221
ecdsa secp384rl sha3g84d | C 221
ecdsa_secp521rl1 shab12 | C 221
rsa_pss rsae sha?56 C 22

24 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

1.5 Standards Compliance

rsa_pss rsae sha3g4 C 22
rsa_pss rsae shab12 C 22
ed25519 NC
ed448 NC
rsa_pss pss sha256 C 23
rsa pss pss sha3g4 C 23
rsa_pss pss shabl2 C 23
rsa_pkesl shal C 22
ecdsa shal C 22

ocetiee o e
Server NC

4.25.0OID Filters Client NC
Server NC

Chent Aathentication. | Client NC
Server NC

4.2.7. Supported Groups | Client C 22.1
secp256rl C 22.1
secp384rl C 22.1
secp521rl C 22.1
x25519 C 221
x448 C 22.1
ffdhe2048 C 221
ffdhe3072 C 22.1
ffdhe4096 C 22.1
ffdhe6144 C 22.1
ffdhe8192 C 221

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 25

href
href
href
href
href
href

1.5 Standards Compliance

Server C 22
secp256rl C 22
secp384rl C 22
secp521rl C 22
x25519 C 22
x448 C 22
ffdhe2048 C 22
ffdhe3072 C 22
ffdhe4096 C 22
ffdhe6144 C 22
ffdhe8192 C 22
4.2.8. Key Share Client C 221
Server C 22
‘éf;i';;i’fﬂhigi K | Client C 222
Server C 22.2
(12,10 Farly Data Client c 233
Server C 233
4.2.11. 'Pre-Shared Key Client C 29
Extension
Server C 222
4.211.1. Ticket Age Client C 22.2
Server C 22.2
4.2.11.2. PSK Binder Client C 222
Server C 222
4.2.11.3. Processing Client NC
Order
Server NC

26 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

4.3.1. Encrypted Client PC 21
Extensions
server_name (RFC6066) | C 232
max_fragment_length
(RFC6066) ¢ 230
supported_groups NC
(RFC7919)
use_srtp (RFC5764) NC
heartbeat (RFC6520) NC
application_layer Jarotocol_nﬁ%)ti ation
(RFC7301)
client_certificate type NC
(RFC7250)
server_certificate type NC
(RFC7250)
early data (RFC8446) C 233
supported versions NG
(RFC8446)
Server PC 22
server_name (RFC6066) | C 232
max_fragment_length
(RFC6066) c 230
supported_groups NC
(RFC7919)
use_srtp (RFC5764) NC
heartbeat (RFC6520) NC
application_layer J)rotocol_nﬁ@ti ation
(RFC7301)
client_certificate type NC
(RFC7250)
server_certificate type NC
(RFC7250)
early_data (RFC8446) C 233

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 27

href
href

1.5 Standards Compliance

supported versions

(RFC8446) NC
4.3.2. Certificate .
Request Client PC 221
status _request (RFC6066) | NC
signature_algorithms
(RFC8446) ¢ 221
signed_certificate_timestam Pne
(RFC6962)
certificate_authorities NG
(RFC8446)
oid filters (RFC8446) NC
signature_algorithms_cert
(RFCB8446) c 221
Server PC 22
status request (RFC6066) | NC
signature_algorithms
(RFC8446) c 22
signed_certificate timestam Pne
(RFC6962)
certificate_authorities NG
(RFC8446)
oid_filters (RFC8446) NC
signature_algorithms_cert c 2
(RFCB8446)
4.4.1. The Transcript
Hash C 22
4.4.2. Certificate Client PC 22.1
Arbitrary certificate chain C 29
orderings '
Ext_raneous certificatesin c 232
chain
status _request (RFC6066) | NC

28 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href

1.5 Standards Compliance

signed_certificate_timestam
(RFC6962)

Server

22

status_request (RFC6066)

signed_certificate timestam
(RFC6962)

4.4.2.1. OCSP Status and
SCT Extensions

Client

NC

Server

NC

4.4.2.2. Server
Certificate Selection

PC

22

The certificate type
MUST be X.509v3, unless
explicitly negotiated
otherwise

22

The server's end-entity
certificate's public

key (and associated
restrictions) MUST be
compatible with the
selected authentication
algorithm from the client's
"signature_algorithms'
extension (currently RSA,
ECDSA, or EdDSA).

22

The certificate MUST
allow the key to be
used for signing with
asignature scheme
indicated in the client's

"signature_algorithms'/"signature_algorithms_cert"

extensions

c

22

The"server_name" and
"certificate_authorities'
extensions are used to
guide certificate selection.
Asservers MAY require
the presence of the
"server_name" extension,
clients SHOULD send
this extension, when
applicable.

PC

232

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 29

href
href
href
href

1.5 Standards Compliance

4.4.2.3. Client Certificate
Selection

PC

221

The certificate type
MUST be X.509v3, unless
explicitly negotiated
otherwise

221

If the
"certificate_authorities'
extension in the
CertificateRequest
message was present, at
least one of the certificates
in the certificate chain
SHOULD beissued by one
of thelisted CAs.

NC

The certificates MUST be
signed using an acceptable
signature algorithm

221

If the CertificateRequest
message contained a
non-empty "oid_filters'
extension, the end-entity
certificate MUST match
the extension Ol Ds that are
recognized by the client

NC

4.4.2.4. Receiving a
Certificate M essage

Client

221

Server

22

4.4.3. Certificate Verify

Client

221

Server

22

4.4.4. Finished

Client

221

Server

22

4.5. End of Early Data

Client

233

Server

olololo]lo] o] o

233

4.6.1. New Session Ticket
M essage

Client

233

early_data (RFC8446)

233

30 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

Server C 233
early_data (RFC8446) C 233
4.6.2. Post-Handshake .
Authentication Client NC
Server NC
4.6.3. Key and
Initialization Vector Client C 22.3
Update
Server C 22.3
5.1. Record L ayer C 22
MUST NOT be interleaved c 2
with other record types
MUST NOT span key C 2
changes
MUST NOT send zero- C 2
length fragments
Alert messages MUST C 2
NOT be fragmented
5.2. Record Payload
Protection ¢ 22
5.3. Per-Record Nonce C 22
5.4. Record Padding PC 22
MAY choose to pad NC
MUST NOT send
Handshake and
Alert records that NC
have a zero-length
TL SInnerPlaintext.content
The padding sent is C 2
automatically verified
5.5. Limitson Key Usage C 22.3
6.1. Closure Alerts NC
close_notify NC

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 31

href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

user_cancelled NC
6.2. Error Alerts PC 22
7.1. Key Schedule C 22
7.2. Updating Traffic
Secrets c 22
7.3. Traffic Key
Calculation ¢ 22
7.5. Exporters NC
8. 0-RTT and Anti- c 29
Replay
8.1. Single-Use Tickets C 22.2
8.2. Cllgnt Hello c 299
Recording
8.3. Freshness Checks C 222
9.1. Mandatory-to-
Implement Cipher Suites ¢ 221
MUST implement the 2
TLS AES 128 GCM_SHA 2%6
SHOULD implement the
TLS AES 256 GCM_SHA384 22
SHOULD implement the 2
TLS CHACHA20 POLY1 36;5_SHA256
Digital signatures C 22.1
MUST support
rsa_pkcsl sha256 (for C 22
certificates)
MUST support
rsa_pss rsae sha256 (for C 2
CertificateVerify and
certificates)
MUST support
ecdsa_secp256rl_sha?256 ¢ 221
Key Exchange C 22

32 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

MUST support key C 2o
exchange with secp256r1
SHOULD support key c 2
exchange with X25519

9.2. M andatory-tof C 239

Implement Extensions
Supported Versions C 22
Cookie C 231
Signature Algorithms C 22
Signature Algorithms
Certificate c 22
Negotiated Groups C 22
Key Share C 22
Server Name Indication C 232
MUST send.and use C 299
these extensions
"supported _versions'
is REQUIRED for
ClientHello, ServerHello | © 22.1
and HelloRetryRequest
"signature_algorithms' is
REQUIRED for certificate | C 22
authentication
"supported_groups"
is REQUIRED for
ClientHello messages C 22
using (EC)DHE key
exchange
"key share" is
REQUIRED for (EC)DHE | C 22
key exchange
"pre_shared key" is
REQUIRED for PSK key |C 222
agreement

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 33

href
href

1.5 Standards Compliance

"psk_key exchange _modes|
is REQUIRED for PSK
key agreement

222

TLS 1.3 ClientHello

221

If not containing a
"pre_shared key"
extension, it MUST
contain both a
"signature_algorithms"'
extension and a
"supported_groups"
extension.

221

If containing a
"supported_groups"
extension, it MUST also
contain a"key_share"
extension, and vice
versa. An empty
KeyShare.client_shares
vector is permitted.

221

TLS 1.3 ServerHello

232

MUST support the use
of the "server_name"
extension

232

9.3. Protocol Invariants

221

MUST correctly handle
extensiblefields

221

A client sending a
ClientHello MUST support
all parameters advertised
init. Otherwise, the server
may fail to interoperate

by selecting one of those
parameters.

221

34 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

A server receiving a
ClientHello MUST
correctly ignore all
unrecognized cipher suites,
extensions, and other
parameters. Otherwise, it
may fail to interoperate
with newer clients. In

TLS 1.3, aclient receiving

221

href

1.5 Standards Compliance

a CertificateRequest

or NewSessionTicket
MUST alsoignore all
unrecognized extensions.

A middlebox which
terminatesaTLS

connection MUST behave NA
asacompliant TLS server
A middlebox which
forwards ClientHello
parameters it does not
understand MUST NOT
process any messages
beyond that ClientHello. NA
It MUST forward all
subsequent traffic
unmodified. Otherwise,
it may fail to interoperate
with newer clients and
servers.
B.4. Cipher Suites C 23
TLS AES 128 GCM_SHAZ56 22
TLS AES 256 GCM_SHA384 22
TLS CHACHA20 POLY1B@5 SHA256 22
TLS AES 128 CCM_SHAZ56 22
TLS AES 128 CCM_8 SHIE256 23
C.1. Random Number C 2
Generation and Seeding
C.2. Certificatesand
Authentication c 22
C.3. Implementation
Pitfalls PC 22
ca. Cllgnt Tracking c 229
Prevention
C.5. Un_authenhcated C 2
Operation
D.1. Negotiating with an c 29

Older Server

Ericsson AB. All Rights Reserved.:

Secure Socket Layer | 35

href
href
href
href
href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

D.2. Negotiating with an

Backward Compatibility

Older Client c 22
D.3. 0-RTT Backward NG

Compatibility

D.4. Middlebox

Compatibility Mode C 23
D.5. Security

Restrictions Related to C 22

Table 5.1: Standards Compliance

36 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href
href
href
href
href
href
href

1.5 Standards Compliance

2 Reference Manual

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 37

ssl

ssl
Application

The sdl application is an implementation of the SSL, TLSand DTLS protocolsin Erlang.
For current statement of standards compliance see the User's Guide.

DEPENDENCIES

The SSL application uses the publ i ¢_key, asnl and Crypto application to handle public keys and encryption,
hence these applications must be loaded for the SSL application to work. In an embedded environment this means
they must be started with appl i cati on: start/[1, 2] beforethe SSL application is started.

CONFIGURATION

The application environment configuration parameters in this section are defined for the SSL application. For more
information about configuration parameters, see the application(3) manual page in Kernel.

The environment parameters can be set on the command line, for example:
erl -ssl protocol _version "["tlsvl.2", "tlsvl.1']"
prot ocol _version = sd:tls version() | [ssl:tls version()] <opt i onal >

Protocol supported by started clients and servers. If thisoption isnot set, it defaultsto all TLS protocols currently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
optiontossl : connect/[2, 3] andssl :listen/2.

dtls_protocol version = sd:dtls version() | [sdl:dtls version()] <opti onal >

Protocol supported by started clientsand servers. If thisoptionisnot set, it defaultsto all DTL S protocolscurrently
supported, more might be configurable, by the SSL application. This option can be overridden by the version
optiontossl : connect/[2, 3] andssl:listen/2.

session_lifetinme = integer() <optional>

Maximum lifetime of the session data in seconds. Defaults to 24 hours which is the maximum recommended
lifetime by RFC 5246. However sessions may beinvalidated earlier due to the maximum limitation of the session
cache table.

session_cb = atom() <optional >
Deprecated Since OTP-23.3 replaced by cl i ent _sessi on_ch andserver _sessi on_cb
client_session_cb = aton() <optional >

Since OTP-23.3 Name client of the session cache calback module that implements the
ssl _session_cache_api behavior. Defaultstossl _cl i ent _sessi on_cache_db.

server_session_cb = atom() <optional >

Since OTP-23.3 Name of the server session cache calback module that implements the
ssl _sessi on_cache_api behavior. Defaultsto ssl _server _sessi on_cache_db.

session_cb_init_args = proplist:proplist() <optional>

Deprecated Since OTP-23.3 replaced by client_session _cb init_args and
server_session_cb _init_args

client_session_cb init_args = proplist:proplist() <optional>
List of extra user-defined argumentsto thei ni t function in the session cache callback module. Defaultsto[] .

38 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href

ssl

server_session_cb_init_args = proplist:proplist() <optional>
List of extra user-defined argumentsto thei ni t function in the session cache callback module. Defaultsto[] .
session_cache_client _nmax = integer() <optional >

Limits the growth of the clients session cache, that is how many sessions towards servers that are cached to be
used by new client connections. If the maximum number of sessions is reached, the current cache entries will
be invalidated regardliess of their remaining lifetime. Defaults to 1000. Recommended sdl-8.2.1 or later for this
option to work as intended.

session_cache_server_nmax = integer() <optional >

Limits the growth of the servers session cache, that is how many client sessions are cached by the server. If the
maximum number of sessionsisreached, the current cache entrieswill beinvalidated regardless of their remaining
lifetime. Defaults to 1000. Recommended ssl-8.2.1 or later for this option to work as intended.

ssl _pem cache_cl ean = integer() <optional >
Number of milliseconds between PEM cache validations. Defaults to 2 minutes.

sdl:clear_pem_cache/O
bypass_pem cache = bool ean() <optional >

Introduced in ss1-8.0.2. Disables the PEM-cache. Can be used as a workaround for the PEM-cache bottleneck
before ss1-8.1.1. Defaults to false.

alert _tinmeout = integer() <optional>

Number of milliseconds between sending of a fatal alert and closing the connection. Waiting a little while
improves the peers chances to properly receiving the aert so it may shutdown gracefully. Defaults to 5000
milliseconds.

internal _active_n = integer() <optional>

For TLS connections this value is used to handle the internal socket. As the implementation was changed from
an active onceto an active N behavior (N = 100), for performance reasons, this option exist for possible tweaking
or restoring of the old behavior (internal_active_n = 1) in unforeseen scenarios. The option will not affect erlang
distribution over TLS that will always run in active N mode. Added in sdl-9.1 (OTP-21.2).

server_session_tickets_amunt = integer() <optional>
Number of session tickets sent by the server. It must be greater than 0. Defaultsto 3.
server_session_ticket |lifetime = integer() <optional>

Lifetime of session tickets sent by the server. Servers must not use any value greater than 604800 seconds (7
days). Expired tickets are automatically removed. Defaults to 7200 seconds (2 hours).

server_session_ticket_store_size = integer() <optional>

Sets the maximum size of the server session ticket store (stateful tickets). Defaultsto 1000. Size limit is enforced
by dropping old tickets.

server_session_ticket _nax_early data = integer() <optional >

Setsthe maximum size of the early datathat the server acceptsand al so configuresits NewSessionTicket messages
toinclude this same size limit in their early_data indication extension. Defaults to 16384. Size limit is enforced
by both client and server.

client_session_ticket lifetime = integer() <optional>

Lifetime of session ticketsin the client ticket store. Expired tickets are automatically removed. Defaultsto 7200
seconds (2 hours).

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 39

ssl

client_session_ticket_store_size = integer() <optional>

Sets the maximum size of the client session ticket store. Defaults to 1000. Size limit is enforced by dropping
old tickets.

ERROR LOGGER AND EVENT HANDLERS

The SSL application uses OTP logger. TLS/DTLS alerts are logged on notice level. Unexpected errors are logged on
error level. These log entries will by default end up in the default Erlang log. The option | og_| evel may be used
toin run-time to set the log level of a specific TLS connection, which is handy when you want to use level debug to
inspect the TL S handshake setup.

SEE ALSO
application(3)

40 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

ssli

Erlang module

This module contains interface functions for the TLS/DTLS protocol. For detailed information about the supported
standards see sd(6).

Data Types

Types used in TLS/DTLS

socket() = gen tcp:socket()
sslsocket() = any()

An opaque reference to the TLS/DTL S connection, may be used for equality matching.

tls option() = tls client option() | tls server option()

tls client option()
client option()
common_option()
socket option()
transport option()

tls server option()
server _option()
common_option()
socket option()
transport option()

socket option() =
gen_tcp:connect_option() |
gen_tcp:listen option() |
gen _udp:option()

|
|
|
(
|
|
|
(

The default socket optionsare[{ node, | i st}, { packet, 0}, {header, 0},{active, true}].

For valid options, seetheinet(3), gen_tcp(3) and gen_udp(3) manual pagesin Kernel. Notethat stream oriented options
such as packet are only relevant for TLS and not DTLS

active msgs() =
{ssl, sslsocket(), Data :: binary() | list()} |
{ss1 closed, sslsocket()} |
{ssl error, sslsocket(), Reason :: any()} |
{ssl passive, sslsocket()}

When aTLS/DTL S socket isin active mode (the default), data from the socket is delivered to the owner of the socket
in the form of messages as described above.

Thessl _passi ve messageis sent only when the socket isin{ acti ve, N} mode and the counter dropped to 0.
It indicates that the socket has transitioned to passive ({ act i ve, fal se}) mode.

transport option() =
{cb_info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom()}} |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 41

ssl

{cb _info,

{CallbackModule :: atom(),
DataTag :: atom(),
ClosedTag :: atom(),
ErrTag :: atom(),
PassiveTag :: atom()}}

Defaults to { gen_tcp, tcp, tcp_closed, tcp_error, tcp_passive} for TLS (for backward
compatibility a four tuple will be converted to a five tuple with the last element "second_element”_passive) and
{gen_udp, udp, udp_closed, udp_error} for DTLS (might aso be changed to five tuplein the future).
Can be used to customize the transport layer. The tag values should be the values used by the underlying transport
in its active mode messages. For TLS the callback module must implement a reliable transport protocol, behave as
gen_t cp, and have functions corresponding to i net : set opt s/ 2,i net: get opts/ 2,i net: peer nane/ 1,
i net: socknane/ 1,andi net : port/ 1. Thecallback gen_t cp istreated specially and callsi net directly. For
DTL S this feature must be considered exprimental.
host() = hostname() | ip address()
hostname() = string()
ip _address() = inet:ip address()
protocol version() = tls version() | dtls version()
tls version() = 'tlsvl.2' | 'tlsvl.3' | tls legacy version()
dtls version() = 'dtlsvl.2' | dtls legacy version()
tls legacy version() = tlsvl | 'tlsvl.1'
dtls legacy version() = dtlsvl
prf _random() = client random | server random
verify type() = verify none | verify peer
ciphers() = [erl cipher suite()] | string()
erl cipher suite() =

#{key exchange := kex algo(),

cipher := cipher(),
mac := hash() | aead,
prf := hash() | default prf}

cipher() =
aes 128 cbc | aes 256 cbc | aes 128 gcm | aes 256 gcm |
aes 128 ccm | aes 256 ccm | aes 128 ccm 8 | aes 256 ccm 8 |
chacha20 poly1305 |
legacy cipher()
legacy cipher() = rc4 128 | des cbc | '3des ede cbc'
cipher filters() =
[{key exchange | cipher | mac | prf, algo filter()}]
hash() = sha | sha2() | legacy hash()
sha2() = sha224 | sha256 | sha384 | sha512
legacy hash() = md5
old cipher suite() =
{kex _algo(), cipher(), hash()} |
{kex _algo(), cipher(), hash() | aead, hash()}

signature _algs() = [{hash(), sign algo()}]
sign algo() = rsa | dsa | ecdsa
sign _scheme() =

42 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

rsa_pkcsl sha256 | rsa pkcsl sha384 | rsa pkcsl sha512 |
ecdsa secp256rl sha256 | ecdsa secp384rl sha384 |
ecdsa secp521rl sha512 | rsa pss _rsae sha256 |
rsa _pss rsae sha384 | rsa pss rsae sha512 |
rsa pss pss sha256 | rsa pss pss sha384 | rsa pss pss sha512 |
rsa _pkcsl shal | ecdsa shal

group() =
secp256rl | secp384rl | secp521rl | ffdhe2048 | ffdhe3072 |
ffdhed4096 | ffdhe6144 | ffdhe8192

kex algo() =
rsa | dhe rsa | dhe dss | ecdhe ecdsa | ecdh ecdsa |
ecdh rsa | srp rsa | srp _dss | psk | dhe psk | rsa psk |
dh_anon | ecdh anon | srp_anon | any

algo filter() =
fun((kex algo() | cipher() | hash() | aead | default prf) ->

true | false)

named curve()

sect571rl | sect571kl | secp521rl | brainpoolP512rl |
sect409kl | sect409rl | brainpoolP384rl | secp384rl |
sect283kl | sect283rl | brainpoolP256rl | secp256kl |
secp256rl | sect239kl | sect233kl | sect233rl | secp224kl |
secp224rl | sectl93rl | sectl93r2 | secpl92kl | secpl92rl |
sectl63kl | sectl63rl | sectl63r2 | secpl6Okl | secpl6Orl |
secpl6Or2

psk identity() = string()

srp_identity() = {Username :: string(), Password :: string()}

srp_param_type() =
srp 1024 | srp 1536 | srp 2048 | srp 3072 | srp 4096 |
srp_6144 | srp 8192

app_level protocol() = binary()

protocol extensions() =
#{renegotiation info => binary(),
signature algs => signature algs(),
alpn => app_level protocol(),
srp => binary(),
next protocol => app level protocol(),
max_frag _enum => 1. .4,
ec_point formats => [0..2],
elliptic curves => [public key:oid()],
sni => hostname()}
error _alert() =
{tls alert, {tls alert(), Description :: string()}}

tls alert() =
close notify | unexpected message | bad record mac |
record overflow | handshake failure | bad certificate |
unsupported certificate | certificate revoked |
certificate expired | certificate unknown |
illegal parameter | unknown ca | access denied |
decode error | decrypt error | export restriction |
protocol version | insufficient security | internal error |

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 43

ssl

inappropriate fallback | user canceled | no _renegotiation |
unsupported extension | certificate unobtainable |
unrecognized name | bad certificate status response |

bad certificate hash value | unknown psk identity |
no_application protocol

reason() = any()

bloom filter window size() = integer()

bloom filter hash functions() = integer()

bloom filter bits() = integer()

client session_ tickets() = disabled | manual | auto
server_session tickets() disabled | stateful | stateless

TLS/DTLS OPTION DESCRIPTIONS - COMMON for SERVER and CLIENT

common_option() =
{protocol, protocol()} |
{handshake, handshake completion()} |
{cert, cert() | [cert()]} |
{certfile, cert pem()} |
{key, key()} |
{keyfile, key pem()} |
{password, key password()} |
{ciphers, cipher suites()} |
{eccs, [named curve()]} |
{signature_algs cert, signature schemes()} |
{supported groups, supported groups()} |
{secure_renegotiate, secure renegotiation()} |
{keep secrets, keep secrets()} |
{depth, allowed cert chain length()} |
{verify fun, custom verify()} |
{crl _check, crl check()} |
{crl _cache, crl cache opts()} |
{max_handshake size, handshake size()} |
{partial chain, root fun()} |
{versions, protocol versions()} |
{user_lookup fun, custom user lookup()} |
{log_level, logging level()} |
{log alert, log alert()} |
{hibernate after, hibernate after()} |
{padding check, padding check()} |
{beast mitigation, beast mitigation()} |
{ssl imp, ssl imp()} |
{session tickets, session tickets()} |
{key update at, key update at()} |
{middlebox comp mode, middlebox comp mode()}

protocol() = tls | dtls

Choose TLS or DTLS protocol for the transport layer security. Defaultstot | s. For DTLS other transports than UDP
are not yet supported.

44 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

handshake completion() = hello | full

Defaults to ful | . If hello is specified the handshake will pause after the hello message and give the user a
possibility make decisions based on hello extensions before continuing or aborting the handshake by calling
handshake _continue/3 or handshake _cancel/1

cert() = public key:der encoded()

The DER-encoded users certificate. Note that the cert option may also be a list of DER-encoded certificates where
the first one is the users certificate and the rest of the certificates constitutes the certificate chain. For maximum
interoperability the certificatesin the chain should bein the correct order, the chain will be sent asistothe peer. If chain
certificates are not provided, certificates from client_cacerts(), server_cacerts(), or client_cafile(), server_cafile() are
used to construct the chain. If this option is supplied, it overrides optioncertfi |l e.

cert pem() = file:filename()

Path to afile containing the user certificate on PEM format or possible several certificates where the first one is the
users certificate and the rest of the certificates constitutes the certificate chain. For more details see cert(),

key() =
{'RSAPrivateKey' | 'DSAPrivateKey' | 'ECPrivateKey' |
'PrivateKeyInfo',
public key:der encoded()} |
#{algorithm := rsa | dss | ecdsa,
engine := crypto:engine ref(),
key id := crypto:key id(),
password => crypto:password()}

The DER-encoded user's private key or a map refering to a crypto engine and its key reference that optionally can
be password protected, seealso crypto:engine load/4 and Crypto's Users Guide. If this option is supplied, it overrides
optionkeyfil e.

key pem() = file:filename()

Path to the file containing the user's private PEM-encoded key. As PEM-files can contain several entries, this option
defaults to the samefile asgiven by optioncertfil e.

key password() = string()

String containing the user's password. Only used if the private keyfile is password-protected.
cipher_suites() = ciphers()

A list of cipher suites that should be supported

The function ssl:cipher_suites/2 can be used to find all cipher suites that are supported by default and al cipher suites
that may be configured.

If you compose your own cipher_suites() make sure they are filtered for cryptolib support
sdl:filter_cipher_suites/2 Additionaly the functions sd:append cipher suites2 , sdl:prepend cipher suites/2,
sdl:suite to_str/1, sdl:str_to suite/1, and sdl:suite_to _openssl_str/1 also exist to help creating customized cipher suite
lists.

Note that TLS-1.3 and TLS-1.2 cipher suites are not overlapping sets of cipher suites so to support both these
versions cipher suites from both versions need to be included. If supporting TLS-1.3 versions prior to TLS-1.2
can not be supported.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 45

ssl

Non-default cipher suitesincluding anonymous cipher suites (PRE TL S-1.3) are supported for interop/testing purposes
and may be used by adding them to your cipher suite list. Note that they must also be supported/enabled by the peer
to actually be used.

signature schemes() = [sign scheme()]

In addition to the signature algorithms extension from TLS 1.2, TLS 1.3 (RFC 5246 Section 4.2.3)adds the
signature_algorithms_cert extension which enables having special requirements on the signatures used in the
certificates that differs from the requirements on digital signatures as a whole. If thisis not required this extension
is not needed.

The client will send a signature_algorithms_cert extension (ClientHello), if TLS version 1.3 or later is used, and the
signature_algs cert option is explicitly specified. By default, only the signature_algs extension is sent.

The signature schemes shall be ordered according to the client's preference (favorite choice first).
supported groups() = [group()]

TLS 1.3 introduces the "supported_groups' extension that is used for negotiating the Diffie-Hellman parametersin a
TLS 1.3 handshake. Both client and server can specify alist of parameters that they are willing to use.

If itisnot specifiedit will useadefault list ([x25519, X448, secp256r1, secp384rl]) that isfiltered based ontheinstalled
crypto library version.

secure_renegotiation() = boolean()

Specifiesif to reject renegotiation attempt that does not live up to RFC 5746. By default secur e_r enegoti at e is
settot r ue, thatis, securerenegotiationisenforced. If settof al se secure renegotiation will still be used if possible,
but it falls back to insecure renegotiation if the peer does not support RFC 5746.

allowed cert chain length() = integer()

Maximum number of non-self-issued intermediate certificatesthat can follow the peer certificatein avalid certification
path. So, if depth is 0 the PEER must be signed by the trusted ROOT-CA directly; if 1 the path can be PEER, CA,
ROQOT-CA,; if 2 the path can be PEER, CA, CA, ROOT-CA, and so on. The default valueis 10.

custom verify() =
{Verifyfun :: function(), InitialUserState :: any()}

The verification fun is to be defined as follows:

fun(OtpCert :: #'OTPCertificate'{}, Event :: {bad cert, Reason :: atom() |
{revoked, atom()}} |

{extension, #'Extension'{}} | valid | valid peer, InitialUserState :: term()) ->
{valid, UserState :: term()} |
{fail, Reason :: term()} | {unknown, UserState :: term()}.

The verification fun is called during the X509-path validation when an error or an extension unknown to the SSL
application isencountered. It isalso called when acertificate is considered valid by the path validation to allow access
to each certificatein the path to the user application. It differentiates between the peer certificate and the CA certificates
by using val i d_peer or val i d as second argument to the verification fun. See the public_key User's Guide for
definition of # OTPCertificate' {} and# Extension' {}.

« If theverify callback funreturns{f ai | , Reason}, the verification processisimmediately stopped, an aert
is sent to the peer, and the TLS/DTL S handshake terminates.
« |f theverify callback funreturns{val i d, User St at e}, the verification process continues.

« Iftheverify callback funawaysreturns{val i d, User St at e}, the TLS/DTL S handshake does not terminate
regarding verification failures and the connection is established.

» |f called with an extension unknown to the user application, return value { unknown, User St at e} isto be
used.

Note that if the fun returns unknown for an extension marked as critical, validation will fail.

46 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href
href

ssl

Default optionveri fy_funinverify_peer node:

{fun(_,{bad cert, } = Reason,) ->
{fail, Reason};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->

{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, []}

Default optionveri fy funinmodeverify none:

{fun(_,{bad cert, }, UserState) ->
{valid, UserState};
(_,{extension, #'Extension'{critical = true}}, UserState) ->
{valid, UserState};
(_,{extension, }, UserState) ->
{unknown, UserState};
(_, valid, UserState) ->
{valid, UserState};
(_, valid peer, UserState) ->
{valid, UserState}
end, [1}

The possible path validation errors are givenon form{ bad_cert, Reason} whereReason is;
unknown_ca

No trusted CA wasfound in the trusted store. The trusted CA isnormally aso called ROOT CA, which isa self-
signed certificate. Trust can be claimed for an intermediate CA (trusted anchor does not have to be self-signed
according to X-509) by using option parti al _chai n.

sel f si gned_peer

The chain consisted only of one self-signed certificate.
PKI X X-509-path validation error

For possible reasons, see public_key:pkix_path validation/3
crl check() = boolean() | peer | best effort

Perform CRL (Certificate Revocation List) verification (public_key:pkix_crls validate/3) on al the certificates during
the path validation (public_key:pkix_path_validation/3) of the certificate chain. Defaultstof al se.

peer
check is only performed on the peer certificate.

best _effort
if certificate revocation status cannot be determined it will be accepted as valid.

The CA certificates specified for the connection will be used to construct the certificate chain validating the CRLs.
The CRLs will be fetched from alocal or external cache. See ssl_crl_cache api(3).

crl _cache opts() =
{Module :: atom(),
{DbHandle :: internal | term(), Args :: list()}}

Specify how to perform lookup and caching of certificate revocation lists. Modul e defaults to ssl_crl_cache with
DbHandl e beingi nt er nal and an empty argument list.

There are two implementations available:

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 47

ssl

ssl _crl _cache

Thismodule maintainsacache of CRLs. CRLscan be added to the cacheusing thefunctionss_crl_cacheiinsert/1,
and optionally automatically fetched through HTTP if the following argument is specified:

{http, timeout()}

Enables fetching of CRLs specified as http URIs inX509 certificate extensions. Requires the OTP inets
application.

ssl _crl _hash_dir
This module makes use of adirectory where CRLs are stored in files named by the hash of the issuer name.

Thefile names consist of eight hexadecimal digitsfollowed by . r N, where Nisaninteger, e.g. 1a2b3c4d. r 0.
For thefirst version of the CRL, Nstartsat zero, and for each new version, Nisincremented by one. The OpenSSL
utility c_r ehash creates symlinks according to this pattern.

For a given hash value, this module finds all consecutive . r * files starting from zero, and those files taken
together make up the revocation list. CRL fileswhose next Updat e fields are in the past, or that are issued by
adifferent CA that happens to have the same name hash, are excluded.

The following argument is required:
{dir, string()}
Specifies the directory in which the CRLs can be found.
root fun() = function()

fun(Chain::[public_key:der encoded()]) ->
{trusted ca, DerCert::public key:der encoded()} | unknown ca}

Claim an intermediate CA in the chain as trusted. TLS then performs public_key:pkix_path validation/3 with the
selected CA as trusted anchor and the rest of the chain.

protocol versions() = [protocol version()]

TLS protocol versions supported by started clients and servers. This option overrides the application environment
option pr ot ocol _versionanddt!| s_protocol _versi on. If the environment option is not set, it defaultsto
all versions, supported by the SSL application. See also s3l(6).

custom user lookup() =
{Lookupfun :: function(), UserState :: any()}

The lookup funisto defined as follows:

fun(psk, PSKIdentity :: binary(), UserState :: term()) ->
{ok, SharedSecret :: binary()} | error;
fun(srp, Username :: binary(), UserState :: term()) ->
{ok, {SRPParams :: srp param type(), Salt :: binary(),
DerivedKey :: binary()}} | error.

For Pre-Shared Key (PSK) cipher suites, thelookup funiscalled by the client and server to determine the shared secret.
When called by the client, PSKI dent i t y is set to the hint presented by the server or to undefined. When called by
the server, PSKI dent i t y istheidentity presented by the client.

For Secure Remote Password (SRP), the fun is only used by the server to obtain parameters that it uses to generate
its session keys. Der i vedKey isto be derived according to RFC 2945 and RFC 5054: cr ypt o: sha([Sal t,
crypto: sha([User nane, <<$:>>, Password])])

session _id() = binary()
Identifiesa TL S session.

48 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

href
href

ssl

log alert() = boolean()

If settof al se, TLS/DTLS Alert reports are not displayed. Deprecated in OTP 22, use {log_level, logging_level()}
instead.

logging level() = logger:level() | none | all

Specifies the log level for a TLS/DTLS connection. Alerts are logged on not i ce level, which is the default level.
Thelevel debug triggers verbose logging of TLS/DTLS protocol messages. See also ssl(6)

hibernate after() = timeout()

When an integer-value is specified, TLS/ DTLS- connect i on goes into hibernation after the specified number of
milliseconds of inactivity, thus reducing its memory footprint. When undef i ned is specified (this is the default),
the process never goes into hibernation.

handshake size() = integer()

Integer (24 bits unsigned). Used to limit the size of valid TLS handshake packets to avoid DoS attacks. Defaults to
256*1024.

padding check() = boolean()

Affects TLS-1.0 connectionsonly. If settof al se, it disablesthe block cipher padding check to be ableto interoperate
with legacy software.

Using { paddi ng_check, bool ean()} makes TLS vulnerable to the Poodle attack. |

beast mitigation() = one n minus one | zero n | disabled

Affects TLS-1.0 connectionsonly. Used to changethe BEA ST mitigation strategy to interoperate with legacy software.
Defaultstoone_n_m nus_one.

one_n_m nus_one - Perform 1/n-1 BEAST mitigation.
zer o_n - Perform O/n BEAST mitigation.
di sabl ed - Disable BEAST mitigation.

Using{ beast _m tigation, disabl ed} makesTLS-1.0vulnerabletothe BEAST attack.

ssl imp() = new | old
Deprecated since OTP-17, has no affect.

session tickets() =
client session tickets() | server session tickets()

Configures the session ticket functionalty in TLS 1.3 client and server.
key update at() = integer() >=1

Configures the maximum amount of bytes that can be sent on a TLS 1.3 connection before an automatic key update
is performed.

There are cryptographic limits on the amount of plaintext which can be safely encrypted under a given set of keys.
The current default ensures that data integrity will not be breached with probability greater than 1/2°57. For more
information see Limits on Authenticated Encryption Usein TLS.

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 49

href

ssl

The default value of this option shall provide the above mentioned security guarantees and it shall be reasonable
for most applications (~353 TB).

middlebox comp mode() = boolean()
Configures the middlebox compatibility mode on a TLS 1.3 connection.

A significant number of middleboxes misbehave when a TLS 1.3 connection is negotiated. |mplementations can
increase the chance of making connections through those middleboxes by making the TLS 1.3 handshake more like
aTLS 1.2 handshake.

The middliebox compatibility modeis enabled (t r ue) by default.
keep secrets() = boolean()
Configuresa TL S 1.3 connection for keylogging

In order to retrieve keylog information on a TLS 1.3 connection, it must be configured in advance to keep the
client_random and various handshake secrets.

The keep_secrets functionality is disabled (f al se) by default.
Added in OTP 23.2

TLS/DTLS OPTION DESCRIPTIONS - CLIENT

client option() =
{verify, client verify type()} |
{reuse_session, client reuse session()} |
{reuse _sessions, client reuse sessions()} |
{cacerts, client cacerts()} |
{cacertfile, client cafile()} |
{alpn_advertised protocols, client alpn()} |
{client_preferred next protocols,
client preferred next protocols()} |
{psk_identity, client psk identity()} |
{srp_identity, client srp identity()} |
{server _name_indication, sni()} |
{max_fragment length, max_ fragment length()} |
{customize hostname_check, customize hostname check()} |
{signature_algs, client signature algs()} |
{fallback, fallback()} |
{session tickets, client session_ tickets()} |
{use ticket, use ticket()} |
{early data, client early data()}

client verify type() = verify type()
Inmodeveri fy_none the default behavior isto alow all x509-path validation errors. See also option verify_fun.

client reuse session() =
session id() | {session id(), SessionData :: binary()}

Reuses a specific session. The session should be refered by its session id if it is earlier saved with the option
{reuse_sessions, save} since OTP-21.3 or explicitly specified by its session id and associated data since
OTP-22.3. See dso SSL's Users Guide, Session Reusepre TLS 1.3

50 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

ssl

client reuse sessions() = boolean() | save

When save is specified anew connection will be negotiated and saved for later reuse. The session ID can be fetched
with connection_information/2 and used with the client option reuse_session The boolean value true specifies that if
possible, automatized session reuse will be performed. If anew session is created, and is unique in regard to previous
stored sessions, it will be saved for possible later reuse. Since OTP-21.3

client cacerts() = [public key:der encoded()]
The DER-encoded trusted certificates. If this option is supplied it overridesoptioncacertfi |l e.
client cafile() = file:filename()

Path to afi